Learning Dynamic Classes of Events using Stacked Multilayer Perceptron Networks

نویسندگان

  • Nattiya Kanhabua
  • Huamin Ren
  • Thomas B. Moeslund
چکیده

People often use a web search engine to find information about events of interest, for example, sport competitions, political elections, festivals and entertainment news. In this paper, we study a problem of detecting event-related queries, which is the first step before selecting a suitable time-aware retrieval model. In general, event-related information needs can be observed in query streams through various temporal patterns of user search behavior, e.g., spiky peaks for popular events, and periodicities for repetitive events. However, it is also common that users search for non-popular events, which may not exhibit temporal variations in query streams, e.g., past events recently occurred, historical events triggered by anniversaries or similar events, and future events anticipated to happen. To address the challenge of detecting dynamic classes of events, we propose a novel deep learning model to classify a given query into a predetermined set of multiple event types. Our proposed model, a Stacked Multilayer Perceptron (S-MLP) network, consists of multilayer perceptron used as a basic learning unit. We assemble stacked units to further learn complex relationships between neutrons in successive layers. To evaluate our proposed model, we conduct experiments using real-world queries and a set of manually created ground truth. Preliminary results have shown that our proposed deep learning model outperforms the state-of-the-art classification models significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Australia's long-term electricity demand forecasting using deep neural networks

Accurate prediction of long-term electricity demand has a significant role in demand side management and electricity network planning and operation. Demand over-estimation results in over-investment in network assets, driving up the electricity prices, while demand underestimation may lead to under-investment resulting in unreliable and insecure electricity. In this manuscript, we apply deep ne...

متن کامل

Using Multiple Node Types to Improve the Performance of DMP ( Dynamic Multilayer Perceptron )

This paper discusses a method for training multi-layer perceptron networks called DMP2 (Dynamic Multi-layer Perceptron 2). The method is based upon a divide and conquer approach which builds networks in the form of binary trees, dynamically allocating nodes and layers as needed. The focus of this paper is on the effects of using multiple node types within the DMP framework. Simulation results s...

متن کامل

Stacked Heterogeneous Neural Networks for Time Series Forecasting

A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weig...

متن کامل

On the Use of Neural Network as a Universal Approximator

Neural network process modelling needs the use of experimental design and studies. A new neural network constructive algorithm is proposed. Moreover, the paper deals with the influence of the parameters of radial basis function neural networks and multilayer perceptrons network in process modelling. Particularly, it is shown that the neural modelling, depending on learning approach, cannot be a...

متن کامل

LEARN++: an incremental learning algorithm for multilayer perceptron networks

We introduce a supervised learning algorithm that gives neural network classification algorithms the capability of learning incrementally from new data without forgetting what has been learned in earlier training sessions. Schapire's boosting algorithm, originally intended for improving the accuracy of weak learners, has been modified to be used in an incremental learning setting. The algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.07219  شماره 

صفحات  -

تاریخ انتشار 2016